Research > Microbe > Bacteria > salmonella

research-industry-display2021-10-19T17:34:01+00:00

Research

See our COVID-19 virus research – CLICK HERE

Common Generic Names

Electrolytically Generated Hypochlorous Acid (HOCl)
Neutral Electrolyzed Water (NEW)
Electrolyzed Oxidizing Water (EOW)
Electro-chemically Activated Water (ECA)
Super-oxidized water (SOW)

Results: 30 published articles

Microbe(s): Listeria monocytogenes, Salmonella enterica

ABSTRACT – Full Text PDF

The goal of this study was to enhance the antimicrobial effect of slightly acidic electrolyzed water (SAEW) through addition of synergistic treatment with ultrasound (US) and mild heat treatment in order to improve the microbial safety of fresh-cut bell pepper. To evaluate the synergistic effects, the Weibull model was used to mathematically measure the effectiveness of the individual and combined treatments against Listeria monocytogenes and Salmonella Typhimurium on the pepper. The combined treatment (SAEWUS60 C) resulted in the TR values of 0.04 and 0.09 min for L. monocytogenes and S. Typhimurium, respectively, as consequence of the minimum value. Subsequently, texture analysis was carried out to test the potential effect on quality of the samples due to the involved mild heat and ultrasound treatment. When compared to the control, there was no significant change (p 0.05) in the texture (color and hardness) of the samples that were treated by 1 min of the combined treatment (SAEWUS60 C) during storage at 4 C for 7 days. This combined treatment achieved approximately 3.0 log CFU/g reduction in the two pathogens. The results demonstrate that the involved hurdle factors which are ultrasound and mild heat achieved the synergistic effect of SAEW against the two pathogens. According to the results of texture analysis, 1 min of SAEWUS60 C is the optimal condition due to without negative influence on the quality of the samples during the storage. The optimal condition shows the enhanced antimicrobial effect of SAEW and enables to improve microbial safety of fresh bell pepper in food industry as a consequence of hurdle approach.

Microbe(s): Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella sp.

ABSTRACT – Full Text PDF

Electrolyzed water generators are readily available in the food industry as a renewable source of hypochlorous acid that eliminates the need for workers to handle hazardous hypochlorite concentrates. We applied electrolyzed water (EW) directly to multi-strain cocktails of Listeria monocytogenes, E. coli O157:H7, and Salmonella sp. at 250 ppm free available chlorine (FAC) and achieved greater than 6-log reductions in 2 min. Lower EW values were examined as antimicrobial interventions for fresh meat (beef carcasses), processed meats (frankfurters), and food contact surfaces (slicing blades). Little or no reduction relative to controls was observed when generic E. coli-inoculated beef carcasses or L. monocytogenes-inoculated frankfurters were showered with EW. Spray application of EW (25 and 250-ppm FAC) onto L. monocytogenes-inoculated slicing blades showed that greater reductions were obtained with clean (3.6 and 5.7-log reduction) vs. dirty (0.6 and 3.3-log reduction) slicing blades, respectively. Trials with L. monocytogenes-inoculated protein-EW solutions demonstrated that protein content as low as 0.1% is capable of eliminating FAC, reducing antimicrobial activity against L. monocytogenes. EW appears better positioned as a surface sanitizer with minimal organic material that can otherwise act as an effective reducing agent to the oxidizing solution rendering it ineffective.

Microbe(s): Escherichia coli, Salmonella Infantis

ABSTRACT – Full Text PDF

The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant.

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium

ABSTRACT – Full Text PDF

Automated produce washers can be a useful processing aid when treating fresh produce contaminated with pathogens. The of near neutral pH electrolyzed (NEO) water as a wash or sanitizing solution has been shown to lead to significant reductions of Escherichia coli O157:H7 and Salmonella on fresh produce. To further enhance reported pathogen reductions, the effects of a combined NEO water (155 mg/L free chlorine, pH 6.5) and ultrasound wash protocol on lettuce and tomatoes inoculated with E. coli O157:H7 and S. Typhimurium DT 104 were studied. The effects of the pH of NEO water and washer agitation on pathogen reductions were also assessed. Inoculated tomatoes and lettuce leaves were treated with either chilled deionized water or NEO water, with or without 20 kHz ultrasound (130 W and 210 W). Tomatoes were treated for 1, 3 and 5 min while lettuce was treated for 5, 10 and 15 min. Ultrasound significantly increased the oxidation-reduction potential (ORP) of NEO water (p < 0.05) but did not affect the pH and free chlorine concentration (p > 0.05). Increased washing time and higher ultrasonic power led to significantly greater reductions of both pathogens on produce items (p < 0.05). NEO water combined with 210 W ultrasonication for 15 min led to 4.4 and 4.3 log reductions of E. coli O157:H7 and S. Typhimurium on lettuce, respectively, while 210 W ultrasound for 5 min completely inactivated both pathogens on tomatoes. Both pathogens were completely inactivated in NEO water solutions, suggesting that its presents little chance of cross-contamination.

Microbe(s): Salmonella Enteritidis

ABSTRACT – Full Text PDF

In order to reduce the risk of enteric pathogens transmission in animal farms, the disinfection effectiveness of slightly acidic electrolyzed water (SAEW, pH 5.85 to 6.53) for inactivating Salmonella Enteritidis on the surface of plastic poultry transport cages was evaluated. The coupled effects of the tap water cleaning time (5 to 15 s), SAEW treatment time (20 to 40 s), and available chlorine concentrations (ACCs) of 30 to 70 mg/l on the reductions of S. Enteritidis on chick cages were investigated using a central composite design of the response surface methodology (RSM). The established RS model had a goodness of fit quantified by the parameter R2 (0.971), as well as a lack of fit test (P > 0.05). The maximum reduction of 3.12 log10 CFU/cm2 for S. Enteritidis was obtained for the cage treated with tap water cleaning for 15 s followed by SAEW treatment for 40 s at an ACC of 50 mg/l. Results indicate that the established RS model has shown the potential of SAEW in disinfection of bacteria on cages.

Microbe(s): Escherichia coli O157:H7, Salmonella Typhimurium

ABSTRACT – Full Text PDF

The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 L of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.

Microbe(s): Escherichia coli, Salmonella enteritidis, Staphylococcus aureus

ABSTRACT – Full Text PDF

The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efciency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m2, respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses.

Microbe(s): Salmonella

ABSTRACT – Full Text PDF

Tomato Best Management Practices require Florida packers to treat tomatoes in a flume system containing at least 150 ppm of free chlorine or other approved sanitizer. However, research is needed to determine the ability of these sanitizers to prevent the transfer of pathogens from contaminated to uncontaminated tomatoes, particularly under realistic packinghoconditions. The goal of this research was to assess the minimum levels of sanitizer needed to prevent Salmonella cross-contamination between tomatoes in a model flume system under clean conditions and conditions where organic matter was added. Inoculated tomatoes (ca. 8.3 log CFU per tomato) were treated along with uninoculated tomatoes in a model flume system containing 0, 10, or 25 ppm of hypochlorous acid (HOCl) under organic loading conditions of 0, 500, or 4,000 ppm of chemical oxygen demand (COD). In the absence of HOCl, uninoculated tomatoes were highly contaminated (ca. 5 log CFU per tomato) by 15 s. No contamination was detectable (<2 log CFU per tomato) on uninoculated tomatoes when HOCl was present, except with 10 ppm at 4,000 ppm of COD, suggesting failure of 10 ppm of HOCl as a sanitizer under very high organic loading conditions. In the presence of HOCl or peroxyacetic acid, Salmonella was undetectable (<1 log CFU/ml) in the model flume water samples after 2 and 30 s, respectively. Upon enrichment, none of the uninoculated tomatoes treated with 25 ppm of HOCl for 120 s were positive for Salmonella, even in the presence of organic loading at 500 ppm of COD. Based on these findings, 25 ppm of HOCl may be adequate to prevent cross-contamination when the concentration is properly maintained, COD does not exceed 500 ppm, and tomatoes are treated for at least 120 s. Further validation in a larger commercial setting and using higher organic loading levels is necessary becamanaging HOCl at this low concentration is difficult, especially in a recirculating system. The of less sanitizer by packers could reduce chemical and disposal costs.

Microbe(s): Salmonella enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus

ABSTRACT – Full Text PDF

The efficacy of slightly acidic electrolyzed water (SAEW) to inactivate foodborne pathogens and indigenous microbiota on shell eggs was evaluated and compared to chlorine dioxide (CD), acidic electrolyzed water (AEW) and NaClO solution. The eggs were artificially inoculated with S. enteritidis, E. coli O157:H7 and S. aureus and sprayed or immersed with SAEW, alkaline electrolyzed water (AlEW) followed by SAEW (AlEWSAEW), CD, AEW and NaClO solution, respectively. The effect of SAEW on the natural microbiota of shell eggs was also determined. Spraying shell eggs with SAEW, CD and NaClO solution at an ACC of 60 mg/L had no significant bactericidal difference for foodborne pathogens and indigenous microbiota on shell eggs, and the difference of disinfection effect between SAEW and AEW was not significant, whereas the bactericidal activity of SAEW for E. coli O157:H7, S. aureus, total aerobic bacteria and moulds and yeasts was significantly higher than that of CD and NaClO solution at ACCs of 80 or 100 mg/L. SAEW was found to be more effective when used in conjunction with AlEW, and higher reductions were obtained with the immersion treatment. Results indicate that the disinfectant efficiency of SAEW is equivalent to or higher than that of chlorine dioxide and NaClO solution and therefore SAEW shows the potential to be used for sanitization of egg shells as an environmentally friendly disinfection agent.

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, Escherichia coli

ABSTRACT – Full Text PDF

Pathogenic contamination is a food safety concern. This study was conducted to investigate the efficacy of neutral electrolyzed water (NEW) in killing pathogens, namely, Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, and Escherichia coli in shrimp. Pure cultures of each pathogen were submerged separately in NEW containing five different chlorine concentrations: 10, 30, 50, 70, and 100 ppm. For each concentration, three submersion times were tested: 1, 3, and 5 min. The population of V. parahaemolyticus was rapidly reduced even at low concentrations, but prolonged contact times caused only a slight reduction. V. vulnificus was gradually inhibited with increasing NEW concentrations and contact times. For the V. parahaemolyticus applications of 70 ppm for 5 min and of 100 ppm for 3 min, each eliminated 7 log CFU/ml. For V. vulnificus, applications of 50 ppm for 3 min and 100 ppm for 1 min, each eliminated 7 log CFU/ml. Salmonella Enteritidis and E. coli were slightly reduced by NEW. Applications of 50 ppm for 15 min and 10 ppm for 30 min completely eliminated 4.16 log CFU/g of V. parahaemolyticus in inoculated shrimp, while only a 1-log CFU/g reduction of V. vulnificus was detected. Soaking shrimp in 10 ppm NEW for 30 min did not affect its sensory quality. Our results suggest NEW could be an alternative sanitizer to improve the microbiological quality of seafood.

Microbe(s): Escherichia coli, Salmonella

ABSTRACT – Full Text PDF

To evaluate the disinfection effectiveness of slightly acidic electrolysed water (SAEW, pH 625653), a new environmental friendly agent for inactivating micro-organisms adhered to the facility and aerosolized in the air of the swine barns and to explore the application of SAEW in livestock industries. Methods and Results Bacteria and fungi were isolated from the swine hoair and treated by SAEW. The SAEW solution was flushed onto surfaces and sprayed within the whole swine barn. SAEW with an available chlorine concentration (ACC) of 300 mg l1 can inhibit isolated microbes completely. The usage of SAEW (300 mg l1) resulted in a significant (P < 005) reduction in microbes on the wall, rail and floor after flushing disinfection. Additionally, spraying SAEW at an ACC of 300 mg l1 reduced 59 of the airborne organisms in 30 min and kept the population of microbes at a reduced level for at least 8 h. SAEW treatment also reduced pathogens on surfaces (P < 003) after spraying disinfection except on the surface of the wall. Conclusions SAEW may be a potential alternative disinfectant to reduce infections in swine barns Significance and Impact of the Study The results of this study provide information on the antimicrobial efficiency of SAEW on the airborne bacteria and fungi in swine barns.

Microbe(s): Listeria monocytogenes, Salmonella Typhimurium

ABSTRACT – Full Text PDF

Anticmicrobial effect of slightly acidic low concentration electrolyzed water (SlALcEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breast meat was evaluated in this study. Meat samples each of 10 0.2 g in weight and 2.5 2.5 cm2 in size were experimentally inoculated with Listeria monocytogenes (ATCC 19115) and Salmonella Typhimurium (ATCC 14028) and subjected to dipping treatment (22 2 C for 10 min) with SlALcEW and StAEW. Shelf-life study was conducted for inoculated and noninoculated meat samples treated with SlALcEW and StAEW at storage temperatures of 5, 15, and 25 C. Dipping treatment with electrolyzed water significantly (P < 0.05) reduced the background and inoculated pathogens compared to untreated controls. The reduction of 1.5 to 2.3 log CFU/g was achieved by SlALcEW and StAEW against background flora, L. monocytogenes and Salmonella Typhimurium. There was no significant difference (P > 0.05) between the SlALcEW and StAEW treatments efficacy. Comparing treated samples to untreated controls showed that SlALcEW and StAEW treatments extended the shelf life of chicken meat at different temperatures with marginal changes of sensory quality. Although SlALcEW and StAEW treatments showed similar antimicrobial effects but SlALcEW was more beneficial in practical application for its semineutral pH and low chlorine content.

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis

ABSTRACT – Full Text PDF

Slightly acidic electrolyzed water (SAEW) as a novel antimicrobial agent is generated by electrolysis of dilute hydrochloric acid (HCl) and/or sodium chloride (NaCl) solution in a cell with or without a separating membrane. The ultraviolet absorption spectra were used to determine the concentration of hypochlorous acid (HClO) and hypochlorite ion (ClO ) in SAEW generated by four different methods and their bactericidal efficiency for inactivation of Escherichia coli O157:H7 and Salmonella enteritidis was evaluated. During the production of equivalent available chlorine in SAEW, more HClO was produced by electrolysis of HCl solution in a non-membrane generator and mixing the acid and alkaline electrolyzed water generated in a generator with membrane, compared with the methods of adding HCl to neutral electrolyzed water (NEW) and electrolyzing the mixture of NaCl and HCl solution in a non-membrane cell. At the 10 mg/L available chlorine concentration, SAEW produced by the methods with more HClO generation had significantly higher (p<0.05) bactericidal efficiency for inactivation of both pathogens.

Microbe(s): Escherichia coli, Salmonella

ABSTRACT – Full Text PDF

The sanitization efficacy of slightly acidic electrolyzed water (SAEW) against food pathogens on 2.7, 2.8 and 2.8 log10CFU/g (E. coli) and 2.87, 2.91 and 2.91 log10CFU/g (Salmonella spp.), respectively following a SAEW treatment. SAEW and NaOCl solution showed no significant sanitization difference (p > 0.05). Results demonstrate that SAEW at low chlorine concentration and a near neutral pH is a potential non-thermal food sanitizer that could represent an s industry, since the same microbial reduction as NaOCl solution is obtained.

Microbe(s): Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes

ABSTRACT – Full Text PDF

This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm , respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.

Microbe(s): Escherichia coli, Listeria innocua, Salmonella choleraesuis

ABSTRACT – Full Text PDF

Chlorine (sodium hypochlorite solution) is the most common disinfectant used in the fresh-cut industry, however, environmental and health risks related to its use have resulted in a need to find new sanitizers. Electrolyzed water (EW) is a promising alternative, showing a broad spectrum of microbial decontamination. In this study the efficacy of acidic electrolyzed water (AEW) and neutral electrolyzed water (NEW) as disinfectants of apple slices inoculated with Escherichia coli, Listeria innocua or Salmonella choleraesuis, individually or in a mixture, were compared to that of sodium hypochlorite solution and distilled water. Apple slices were inoculated with a 107 cfu/mL suspension of the pathogens and treated with diluted electrolyzed water. Bactericidal activity of washing treatments was assessed after 30 min and after storage for 5 days at 4 C. AEW and NEW disinfection efficacy was compared to that of washings with sodium hypochlorite at the same free chlorine concentration and with distilled water. AEW diluted to 100 mg/L of free chlorine was the treatment with the highest bactericidal activity in all tested conditions (reductions obtained ranged from 1.2 to 2.4 log units) followed by NEW and AEW at 100 and 50 mg/L of free chlorine respectively. In general these treatments were equal or more effective than sodium hypochlorite washings at 100 mg/L of free chlorine. The effect of the different sanitizer washings when pathogens where in a mixture was similar to that which occurred when pathogens were individually inoculated. The effectiveness of all washings slightly decreased when apple slices were stored for 5 days at 4 C.

Microbe(s): Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus

ABSTRACT – Full Text PDF

In this study we investigated the effects of low concentration electrolyzed water (LcEW) and several other sanitizers (strong acid electrolyzed water (SAEW), aqueous ozone (AO), 1% citric acid (CA) and sodium hypochlorite solution (NaOCl)) on the inactivation of natural microflora (total aerobic bacteria counts (TBC) and yeasts and moulds (YM)) and foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium and Bacillus cereus) on oyster mushroom. The effects of temperature and treatment time on the antimicrobial activity of LcEW to reduce the populations of foodborne pathogens were also determined. LcEW showed the strongest bactericidal efficacy among all the sanitizers on TBC, YM and pathogens by reductions of 1.35, 1.08 and 1.90 2.16 log CFU/g after 3 min treatment at room temperature (23 2 C), respectively. There was no significant difference between the antimicrobial effects of LcEW and SAEW (P > 0.05). Among those sanitizers, their relative influence of inactivation was LcEW > NaOCl > CA > AO.

Microbe(s): Escherichia coli O157:H7, Salmonella enteritidis

ABSTRACT – Full Text PDF

High microbial populations on mung beans and its sprouts are the primary reason of a short shelf life of these products, and potentially present pathogens may cause human illness outbreak. The efficiency for inactivating Escherichia coli O157:H7 (E. coli O157:H7) and Salmonella enteritidis (S. enteritidis), which were artificially inoculated on mung bean seeds and sprouts, by means of slightly acidic electrolyzed water (SAEW, pH 5.0 to 6.5) generated through electrolysis of a mixture of NaCl and hydrochloric acid solution in a non-membrane electrolytic chamber, was evaluated at the different available chlorine concentrations (ACCs, 20-120 mg/l) and treatment time (3-15 min), respectively. The effect of SAEW treatment on the viability of seeds was also determined. Results indicate that the ACC had more significant effect on the bactericidal activity of SAEW for reducing both pathogens on the seeds and sprouts compared to treatment time (P < 0.05). The seeds and sprouts treated with SAEW at ACCs of 20 and 80 mg/l resulted in a reduction of 1.32-1.78 log10 CFU/g and 3.32-4.24 log10 CFU/g for E. coli, while 1.27-1.76 log10 CFU/g and 3.12-4.19 log10 CFU/g for S. enteritidis, respectively. The germination percentage of mung bean seeds was not significantly affected by the treatment of SAEW at an ACC of 20 mg/l for less than 10 min (P > 0.05). The finding of this study implies that SAEW with a near-neutral pH value and low available chlorine is an effective method to reduce foodborne pathogens on seeds and sprouts with less effects on the viability of seeds.

Microbe(s): Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus

ABSTRACT – Full Text PDF

The bactericidal effect of slightly acidic hypochlorous water (SAHW) on Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus, as well as some bacterial strains isolated from fresh lettuce was evaluated. Viable counts of all tested bacterial samples decreased immediately after treatment by SAHW. Most bacterial cells with the exception of B. cereus, and S. aureus were not culturable on TSA after treatment by 1 to 30 mg/L SAHW. Likewise, Pseudomonas sp., and Flavobacterium or Xanthomonas sp., Kurthia sp., Micrococcus sp., and Corynebacterium or Microbacterium sp. were not culturable on TSA after treatment by 30 mg/L SAHW. Viable counts of S. aureus, E. coli, Flavobacterium or Xanthomonas sp., and Pseudomonas sp. showed a 5 to 6 log cfu/mL reduction at day 0 and maintained a count of less than 1 log cfu/mL from day 1 to day 7 following treatment by 30 mg/L SAHW. Sodium hypochlorite (NaOCl, 0.5-1.0 mg/L) decreased the viable counts of S. Enteritidis to less than the lower limit of detection, 1 log cfu/mL, from day 1 to day 7 following treatment by 1 mg/L. NaOCl was not sufficient at 0.5-0.75 mg/L in reducing viable counts of S. Enteritidis because of a 2 to 5 log cfu/mL increase from day 2 to day 5 due to recovery from injury. Initial counts of S. Enteritidis after hydrogen

Microbe(s): Salmonella spp., Escherichia coli

ABSTRACT – Full Text PDF

Antimicrobial effect of slightly acidic electrolyzed water (SAEW: pH 5.6 0.1, 20.5 1.3 mg/L available chlorine concentration; ACC) against indigenous aerobic mesophiles and inoculated Escherichia coli and Salmonella spp. on fresh strawberry was assessed. The antimicrobial effect of SAEW was compared with that of strong acidic electrolyzed water (StAEW) and sodium hypochlorite (NaOCl) solution. SAEW effectively reduced total aerobic mesophilic bacteria from strawberries by 1.68 log10CFU/g and was not significantly different from that ofNaOCl solution (p > 0.05). Antimicrobial effect of SAEW against Salmonella spp. andE. coli was indicated by a more than 2 log10CFU/g reduction of their population andthe effect was not significantly different from that of NaOCl solution and StAEW at similar treatment conditions (p > 0.05). From these findings, SAEW with a near-neutral pH and low available chlorine concentration exhibits an equivalent bactericidal effectiveness to NaOCl solution and thus SAEW is a potential sanitizer that would be used as an alternative for StAEW and NaOCl solution in the fresh fruit and vegetables industry.

Microbe(s): Salmonella enteritidis

ABSTRACT – Full Text PDF

The efficiency of slightly acidic electrolyzed water (SAEW) at different temperatures (4, 20 and 45 C) for inactivation of Salmonella enteritidis and it on the surface of shell eggs was evaluated. The bactericidal activity of SAEW, sodium hypochlorite solution (NaClO) and acidic electrolyzed water (AEW) to inactivate S. enteritidis was also compared. SAEW with a pH value of 6.0-6.5 used was generated by the electrolysis of a dilute hydrochloric acid (2.4 mM) in a chamber without a membrane. Although the pH value of SAEW was greatly higher than that of AEW (pH2.6-2.7), SAEW had a comparative powerful bactericidal activity at the same available chlorine concentrations. The efficiency of SAEW for inactivation of pure S. enteritidis cultures increased with increasing the available chlorine concentration and treatment time at the three different temperatures. The S. enteritidis counts decreased to less than 1.0 log10 CFU/ml at available chlorine of 2 mg/l and 100% inactivation (reduction of 8.2 log10 CFU/ml) was resulted in using SAEW with available chlorine more than 4 mg/l at 4, 20 and 45 C after 2 min treatment, whereas no reduction was observed in the control samples. Moreover, SAEW was also effective for inactivating the S. enteritidis inoculated on the surface of shell eggs. A reduction of 6.5 log10 CFU/g of S. enteritidis on shell eggs was achieved by SAEW containing 15 mg/l available chlorine for 3 min, but only a reduction of 0.9-1.2 log10 CFU/g for the control samples. No survival of S. enteritidis was recovered in waste wash SAEW after treatment. The findings of this study indicate that SAEW may be a promising disinfectant agent for the shell egg washing processing without environmental pollution.

Microbe(s): Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, Erwinia carotovora

ABSTRACT – Full Text PDF

Consumption of minimally-processed, or fresh-cut, fruit and vegetables has rapidly increased in recent years, but there have also been several reported outbreaks associated with the consumption of these products. Sodium hypochlorite is currently the most widespread disinfectant used by fresh-cut industries. Neutral electrolyzed water (NEW) is a novel disinfection system that could represent an alternative to sodium hypochlorite. The aim of the study was to determine whether NEW could replace sodium hypochlorite in the fresh-cut produce industry. The effects of NEW, applied in different concentrations, at different treatment temperatures and for different times, in the reduction of the foodborne pathogens Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 and against the spoilage bacterium Erwinia carotovora were tested in lettuce. Lettuce was artificially inoculated by dipping it in a suspension of the studied pathogens at 108, 107 or 105 cfu ml 1, depending on the assay. The NEW treatment was always compared with washing with deionized water and with a standard hypochlorite treatment. The effect of inoculum size was also studied. Finally, the effect of NEW on the indigenous microbiota of different packaged fresh-cut products was also determined. The bactericidal activity of diluted NEW (containing approximately 50 ppm of free chlorine, pH 8.60) against E. coli O157:H7, Salmonella, L. innocua and E. carotovora on lettuce was similar to that of chlorinated water (120 ppm of free chlorine) with reductions of 1 2 log units. There were generally no significant differences when treating lettuce with NEW for 1 and 3 min. Neither inoculation dose (107 or 105 cfu ml 1) influenced the bacterial reduction achieved. Treating fresh-cut lettuce, carrot, endive, corn salad and Four seasons salad with NEW 1:5 (containing about 50 ppm of free chlorine) was equally effective as applying chlorinated water at 120 ppm. Microbial reduction depended on the vegetable tested: NEW and sodium hypochlorite treatments were more effective on carrot and endive than on iceberg lettuce, Four seasons salad and corn salad. The reductions of indigenous microbiota were smaller than those obtained with the artificially inoculated bacteria tested (0.5 1.2 log reduction). NEW seems to be a promising disinfection method as it would allow to reduce the amount of free chlorine used for the disinfection of fresh-cut produce by the food industry, as the same microbial reduction as sodium hypochlorite is obtained. This would constitute a safer, in situ , and easier to handle way of ensuring food safety.

Microbe(s): Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes

ABSTRACT – Full Text PDF

Shredded carrots were inoculated with Escherichia coli O157:H7, Salmonella or Listeria monocytogenes and washed for 1 or 2 min with chlorine (Cl; 200 ppm), peroxyacetic acid (PA; 40 ppm) or acidified sodium chlorite (ASC; 100, 200, 500 ppm) under simulated commercial processing conditions. After washed, the carrots were spin dried, packaged and stored at 5 C for up to 10 days. Bacterial enumeration was significantly (P 0.05) reduced by 1, 1.5 and 2.5 log CFU/g after washing with ASC 100, 250 and 500 ppm, respectively. All sanitizers reduced pathogen load below that of tap water wash and unwashed controls. During storage at 5 C the bacterial load of all treatments increased gradually, but to different extent in different treatments. ASC inhibited bacterial growth more effectively than the other sanitizers and also maintained the lowest pathogen counts (<1 log CFU/g) during storage. Organic matter in the process water significantly (P 0.05) reduced the antibacterial efficacy of Cl, but not that of PA or ASC. Therefore, ASC shows the potential to be used as a commercial sanitizer for washing shredded carrots.

Microbe(s): Salmonella Enteritidis, Listeria monocytogenes

ABSTRACT – Full Text PDF

The efficacy of acidic electrolyzed (EO) water produced at three levels of total available chlorine (16, 41, and 77 mg/liter) and chlorinated water with 45 and 200 mg/liter of residual chlorine was investigated for inactivating Salmonella Enteritidis and Listeria monocytogenes on shell eggs. An increasing reduction in Listeria population was observed with increasing chlorine concentration from 16 to 77 mg/liter and treatment time from 1 to 5 min, resulting in a maximal reduction of 3.70 log CFU per shell egg compared with a deionized water wash for 5 min. There was no significant difference in antibacterial activities against Salmonella and Listeria at the same treatment time between 45 mg/liter of chlorinated water and 14 A acidic EO water treatment (P 0.05). Chlorinated water (200 mg/liter) wash for 3 and 5 min was the most effective treatment; it reduced mean populations of Listeria and Salmonella on inoculated eggs by 4.89 and 3.83 log CFU/shell egg, respectively. However, reductions (log CFU/shell egg) of Listeria (4.39) and Salmonella (3.66) by 1 min alkaline EO water treatment followed by another 1 min of 14 A acidic EO water (41 mg/liter chlorine) treatment had a similar reduction to the 1 min 200 mg/liter chlorinated water treatment for Listeria (4.01) and Salmonella (3.81). This study demonstrated that a combination of alkaline and acidic EO water wash is equivalent to 200 mg/liter of chlorinated water wash for reducing populations of Salmonella Enteritidis and L. monocytogenes on shell eggs.

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, Listeria monocytogenes

ABSTRACT – Full Text PDF

A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.

Microbe(s): Salmonella enterica

ABSTRACT – Full Text PDF

Alfalfa sprouts have been implicated in several salmonellosis outbreaks in recent years. The disinfectant effects of acidic electrolyzed oxidizing (EO) water against Salmonella enterica both in an aqueous system and on artificially contaminated alfalfa seeds were determined. The optimum ratio of seeds to EO water was determined in order to maximize the antimicrobial effect of EO water. Seeds were combined with EO water at ratios (wt/vol) of 1:4, 1:10, 1:20, 1:40, and 1:100, and the characteristics of EO water (pH, oxidation reduction potential [ORP], and free chlorine concentration)were determined. When the ratio of seeds to EO water was increased from 1:4 to 1:100, the pH decreased from 3.82 to 2.63, while the ORP increased from +455 to +1,073 mV. EO water (with a pH of 2.54 to 2.38 and an ORP of +1,083 to +1,092 mV) exhibited strong potential for the inactivation of S. enterica in an aqueous system (producing a reduction of at least 6.6 log CFU/ml). Treatment of artificially contaminated alfalfa seeds with EO water at a seed to EO water ratio of 1:100 for 15 and 60 min significantly reduced Salmonella populations by 2.04 and 1.96 log CFU/g, respectively (P < 0.05), while a Butterfield s buffer wash decreased Salmonella populations by 0.18 and 0.23 log CFU/g, respectively. After treatment, EO water was Salmonella negative by enrichment with or without neutralization. Germination of seeds was not significantly affected (P > 0.05) by treatment for up to 60 min in electrolyzed water. The uptake of liquid into the seeds was influenced by the internal gas composition (air, N2, or O2) of seeds before the liquid was added.

Microbe(s): Salmonella enteritidis, Listeria monocytogenes

ABSTRACT – Full Text PDF

Aims: To determine the efficacy of neutral electrolyzed water (NEW) in killing Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes, as well as nonpathogenic E. coli, on the surface of tomatoes, and to evaluate the effect of rinsing with NEW on the organoleptic characteristics of the tomatoes. Methods and Results: The bactericidal activity of NEW, containing 444 or 89 mg l-1 of active chlorine, was evaluated over pure cultures (8-5 log CFU ml-1) of the above-mentioned strains. All of them were reduced by more than 6 log CFU ml-1 within 5 min of exposure to NEW. Fresh tomatoes were surface-inoculated with the same strains, and rinsed in NEW (89 mg l-1 of active chlorine) or in deionized sterile water (control), for 30 or 60 s. In the NEW treatments, independent of the strain and of the treatment time, an initial surface population of about 5 log CFU sq.cm-1 was reduced to <1 log CFU sq.cm-1, and no cells were detected in the washing solution by plating procedure. A sensory evaluation was conducted to ascertain possible alterations in organoleptic qualities, yielding no significant differences with regard to untreated tomatoes. Significance and Impact of the Study: Rinsing in NEW reveals as an effective method to control the presence of E. coli O157:H7, S. enteritidis and L. monocytogenes on the surface of fresh tomatoes, without affecting their organoleptic characteristics. This indicates its potential application for the decontamination of fresh produce surfaces.

Microbe(s): Escherichia coli O157: H7, Salmonella Enteritidis, and Listeria monocytogenes

ABSTRACT – Full Text PDF

A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study s findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.

Microbe(s):  Salmonella spp.

ABSTRACT – Full Text PDF

Foodborne pathogens in cell suspensions or attached to surfaces can be reduced by electrolyzed oxidizing (EO) water; however, the use of EO water against pathogens associated with poultry has not been explored. In this study, acidic EO water [EO-A; pH 2.6, chlorine (CL) 20 to 50 ppm, and oxidation-reduction potential (ORP) of 1,150 mV], basic EO water (EO-B; pH 11.6, ORP of -795 mV), CL, ozonated water (OZ), acetic acid (AA), or trisodium phosphate (TSP) was applied to broiler carcasses inoculated with Salmonella Typhimurium (ST) and submerged (4 C, 45 min), spray-washed (85 psi, 25 C, 15 s), or subjected to multiple interventions (EO-B spray, immersed in EO-A; AA or TSP spray, immersed in CL). Remaining bacterial populations were determined and compared at Day 0 and 7 of aerobic, refrigerated storage. At Day 0, submersion in TSP and AA reduced ST 1.41 log10, whereas EO-A water reduced ST approximately 0.86 log10. After 7 d of storage, EO-A water, OZ, TSP, and AA reduced ST, with detection only after selective enrichment. Spray-washing treatments with any of the compounds did not reduce ST at Day 0. After 7 d of storage, TSP, AA, and EO-A water reduced ST 2.17, 2.31, and 1.06 log10, respectively. ST was reduced 2.11 log10 immediately following the multiple interventions, 3.81 log10 after 7 d of storage. Although effective against ST, TSP and AA are costly and adversely affect the environment. This study demonstrates that EO water can reduce ST on poultry surfaces following extended refrigerated storage.

Microbe(s): Escherichia coli, Salmonella spp.

ABSTRACT – Full Text PDF

The sanitization efficacy of slightly acidic electrolyzed water (SAEW) against food pathogens on 2.7, 2.8 and 2.8 log10CFU/g (E. coli) and 2.87, 2.91 and 2.91 log10CFU/g (Salmonella spp.), respectively following a SAEW treatment. SAEW and NaOCl solution showed no significant sanitization difference (p > 0.05). Results demonstrate that SAEW at low chlorine concentration and a near neutral pH is a potential non-thermal food sanitizer that could represent an s industry, since the same microbial reduction as NaOCl solution is obtained.

Go to Top