Research > Microbe > Bacteria > enterococcus



See our COVID-19 virus research – CLICK HERE

Common Generic Names

Electrolytically Generated Hypochlorous Acid (HOCl)
Neutral Electrolyzed Water (NEW)
Electrolyzed Oxidizing Water (EOW)
Electro-chemically Activated Water (ECA)
Super-oxidized water (SOW)

Results: 3 published articles

Microbe(s): Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, MRSE, VRE Bacillus subtilis, Myroides spp.


Super-oxidized water is one of the broad spectrum disinfectants, which was introduced recently. There are many researches to find reliable chemicals which are effective, inexpensive, easy to obtain and use, and effective for disinfection of microorganisms leading hospital infections. Antimicrobial activity of super-oxidized water is promising. The aim of this study was to investigate the in-vitro antimicrobial activity of different concentrations of Medilox super-oxidized water that is approved by the Food and Drug Administration (FDA) as high level disinfectant. Material and methods In this study, super-oxidized water obtained from Medilox Soosan E & C, Korea device, which had been already installed in our hospital, was used. Antimicrobial activities of different concentrations of super-oxidized water (1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100) at different exposure times (1, 2, 5, 10, 30 min) against six ATCC strains, eight antibiotic resistant bacteria, yeasts and molds were evaluated using qualitative suspension test. Dey-Engley Neutralizing Broth Sigma-Aldrich, USA was used as neutralizing agent. Results Medilox was found to be effective against all standard strains (Acinetobacter baumannii 19606, Escherichia coli 25922, Enterococcus faecalis 29212, Klebsiella pneumoniae 254988, Pseudomonas aeruginosa 27853, Staphylococcus aureus 29213), all clinical isolates (Acinetobacter baumannii, Escherichia coli, vancomycin-resistant Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Myroides spp.), and all yeastsat 1/1 dilution in 1 minute. It was found to be effective on Aspergillus flavus at 1/1 dilution in 2 minutes and on certain molds in 5 minutes. Conclusion Medilox super-oxidized water is a broad spectrum, on-site producible disinfectant, which is effective on bacteria and fungi and can be used for the control of nosocomial infection.

Microbe(s): Enterococcus faecium, Mycobacterium avium subspecies avium, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans


Standards of the German Association of Veterinary Medicine (DVG) for the evaluation of chemical disinfectants were used to assess the anti-microbial efficacy of electrolysed oxidizing water (EOW). Enterococcus faecium, Mycobacterium avium subspecies avium, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans were exposed to anode EOW (pH, 3.0 0.1; oxidation-reduction potential (ORP), +1100 50 mV; free chlorine, 400 20 mg/l Cl2) and combined EOW (7 : 3 anode : cathode, v/v; pH, 8.3 0.1; ORP, 930 950 mV; free chlorine, 271 20 mg/l Cl2). In water of standardized hardness (WSH), all bacterial strains were completely inactivated by a 30 min exposure to maximum 10.0% anode EOW ( 40.0 mg/l Cl2) or 50.0% combined EOW ( 135.5 mg/l Cl2). The sensitivity ranking order for anode EOW to the bacterial test strains was P. mirabilis > S. aureus > M. avium ssp. avium > E. faecium > P. aeruginosa. P. mirabilis and S. aureus decreased to undetectable levels after 5 min of exposure to 7.5% anode EOW ( 30.0 mg/l Cl2). Candida albicans was completely inactivated by a 5-min exposure to 5.0% anode EOW. Both, anode and combined EOW exhibited no anti-microbial activities in standardized nutrient broth or after addition of 20.0% bovine serum to the WSH. Further research is necessary to evaluate the efficacy of EOW as a disinfectant under operating conditions in animal production facilities.

Microbe(s): Enterococcus faecalis


Objective: The purpose of this study was to determine the antimicrobial efficacy of sodium hypochlorite adjusted to pH 12, 7.5, and 6.5 in human root canals infected by Enterococcus faecalis. Study design: One hundred sixty-five human single-rooted teeth were prepared and inoculated with E. faecalis for 48 h. Teeth were divided into 3 experimental groups according to the irrigation pattern used: group 1, 4.2% NaOCl pH 12; group 2, 4.2% NaOCl pH 7.5; and group 3, 4.2% NaOCl pH 6.5. Samples from the root canals were collected, and bacterial growth was analyzed by turbidity of the culture medium. Results: None of the irrigating solutions used in this study demonstrated 100% effectiveness against E. faecalis. The antibacterial effectiveness of 4.2% NaOCl at pH 6.5 was significantly increased (P = .03) compared with 4.2% NaOCl at pH 12 (chi-squared test: P < .05). Conclusion: Bactericidal activity of NaOCl solution is enhanced by weak acidification of 4.2% NaOCl solution at pH 6.5.

Go to Top