Research > Microbe > Bacteria > campylobacter



See our COVID-19 virus research – CLICK HERE

Common Generic Names

Electrolytically Generated Hypochlorous Acid (HOCl)
Neutral Electrolyzed Water (NEW)
Electrolyzed Oxidizing Water (EOW)
Electro-chemically Activated Water (ECA)
Super-oxidized water (SOW)

Results: 4 published articles

Microbe(s): Campylobacter


This study investigated the effectiveness of spraying electrolysed water for reducing the numbers of Campylobacter on chicken carcasses. Previous studies have used solutions with free chlorine concentrations above 25 ppm and low pH to treat inoculated carcasses. The four trials described here were carried out at process plants treating naturally contaminated, hot, birds with electrolysed sodium chloride or sodium carbonate solutions, plain water, or no water. The birds were chilled after treatment. Free chlorine concentrations were all below 20 ppm, pH was 7 units or more, and redox potentials were below 830 mV. None of the treatments produced more than a 0.3-log reduction in Campylobacter numbers compared to counts on untreated carcasses. This study concludes that, at the low chlorine concentrations allowed in the EU, spraying with electrolysed water is not an effective method of reducing the number or prevalence of Campylobacter on chicken carcasses.

Microbe(s): Escherichia coli, Campylobacter, Salmonella


A study was conducted to investigate the effects of spray washing broiler carcasses with acidified electrolyzed oxidizing water (EO) or sodium hypochlorite (HOCl) solutions for 5, 10, or 15 s. Commercial broiler carcasses were contaminated with 0.1 g of broiler cecal contents inoculated with 105 cells of Campylobacter and 105 cells of nalidixic acid-resistant Salmonella. Numbers of bacteria recovered from unwashed control carcasses were 6.7, 5.9, 6.3, and 3.9 log10 cfu/mL for total aerobic bacteria, Escherichia coli, Campylobacter, and Salmonella, respectively. Washing in either EO (50 mg/L of sodium hypochlorite, pH 2.4, oxidation reduction potential of 1,180 mV) or HOCl (50 mg/L of sodium hypochlorite, pH 8.0) significantly reduced the levels of bacteria recovered from carcasses (P < 0.05). Carcasses washed with EO had slightly lower levels of total aerobic bacteria (0.3 log10 cfu/mL) and E. coli (0.2 log10 cfu/mL) than HOCl-treated carcasses; however, populations of Campylobacter and Salmonella were comparable after washing in either solution. Increasing the carcass washing time from 5 to 10 s lowered the levels of total aerobic bacteria (6.1 vs. 5.8 log10 cfu/mL), E. coli (4.6 vs. 4.1 log10 cfu/mL), Campylobacter (5.2 vs. 4.2 log10 cfu/mL), and Salmonella (2.0 vs. 1.2 log10 cfu/mL), but no further microbiological reductions occurred when washing time was extended from 10 to 15 s. Data from the present study show that washing poultry carcasses with EO is slightly better (total aerobic bacteria and E. coli) or equivalent to (Campylobacter and Salmonella) washing with HOCl. Washing broiler carcasses for a period equivalent to 2 inside-outside bird washers (10 s) provided greater reductions in carcass bacterial populations than periods simulating 1 (5 s) or 3 inside-outside bird washers (15 s).

Microbe(s): Campylobacter jejuni


This study was undertaken to investigate the efficacy of alkaline and acidic electrolyzed (EO) water in preventing and removing fecal contaminants and killing Campylobacter jejuni on poultry carcasses under simulated industrial processing conditions. New York dressed and defeathered chicken carcasses spot-inoculated with cecal material or C. jejuni were subjected to spraying treatment with alkaline EO or 10% trisodium phosphate (TSP) water or combinations of spraying and immersion treatments with acidic EO and chlorinated water, respectively. Prespraying chicken carcasses with alkaline EO water significantly lowered cecal material attachment scores (3.77) than tap water (4.07) and 10% TSP (4.08) upon treatment of the dorsal area. Combinations of pre- and postspraying were significantly more effective than postspraying only, especially when using alkaline EO water in removing fecal materials on the surface of chicken carcasses. Although treatment by immersion only in EO and chlorinated water significantly reduced the initial population (4.92 log10 cfu/g) of C. jejuni by 2.33 and 2.05 log10 cfu/g, respectively, combinations of spraying and immersion treatment did not improve the bactericidal effect of sanitizers. The results indicated that alkaline EO water might provide an alternative to TSP in preventing attachment and removal of feces on the surface of chicken carcasses. The results also suggested that chicken carcasses containing pathogenic microorganisms may contribute to the cross-contamination of whole batches of chickens during processing in the chiller tank and afterward.

Microbe(s): Campylobacter jejuni


The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.

Go to Top