Research > Industry > Public Health Industry > Contact Surfaces



See our COVID-19 virus research – CLICK HERE

Common Generic Names

Electrolytically Generated Hypochlorous Acid (HOCl)
Neutral Electrolyzed Water (NEW)
Electrolyzed Oxidizing Water (EOW)
Electro-chemically Activated Water (ECA)
Super-oxidized water (SOW)

Results: 2 published articles

Microbe(s): Viruses, Norovirus


Noroviruses (NVs) are the most frequent cause of outbreaks of gastroenteritis in common settings, with surface-mediated transfer via contact with fecally contaminated surfaces implicated in exposure. NVs are environmentally stable and persistent and have a low infectious dose. Several disinfectants have been evaluated for efficacy to control viruses on surfaces, but the toxicity and potential damage to treated materials limits their applicability. Sterilox hypochlorous acid (HOCl) solution (HAS) has shown broad-spectrum antimicrobial activity while being suitable for general use. The objectives of this study were to evaluate the efficacy of HAS to reduce NV both in aqueous suspensions and on inanimate carriers. HOCl was further tested as a fog to decontaminate large spaces. HOCl effectiveness was evaluated using nonculturable human NV measured by reverse transcriptase PCR (RT-PCR) and two surrogate viruses, coliphage MS2 and murine NV, that were detected by both infectivity and RT-PCR. Exposing virus-contaminated carriers of ceramic tile (porous) and stainless steel (nonporous) to 20 to 200 ppm of HOCl solution resulted in 99.9% ( 3 log10) reductions of both infectivity and RNA titers of tested viruses within 10 min of exposure time. HOCl fogged in a confined space reduced the infectivity and RNA titers of NV, murine NV, and MS2 on these carriers by at least 99.9% (3 log10), regardless of carrier location and orientation. We conclude that HOCl solution as a liquid or fog is likely to be effective in disinfecting common settings to reduce NV exposures and thereby control virus spread via fomites.

Microbe(s): Viruses, HIV


Electrolyzed products of a sodium chloride solution contain free residual chlorine and have been proved to be effective for disinfection. Electrolyzed strong acid water containing a low sodium chloride concentration (ESW-L) is prepared by the electrolysis of a solution containing a low sodium chloride concentration (0.1% or less). Although ESW-L has been confirmed to be an effective disinfectant, disinfective efficacy against dried HIV-1 and a target of ESW-L against HIV-1 have not been clarified. In this study, we attempted to demonstrate the efficacy of ESW-L against dried HIV-1 which relatively resists disinfection and to analyze disinfection target. We demonstrated that ESWL inactivated the infectivity of dried HIV-1. In the analysis of the mechanism of disinfection, although the HIV-1 structural protein, p24 within the virus particle, was not inactivated by ESW-L, the enzymatic activity of reverse transcriptase (RT) and genomic RNA within the particle, however, were inactivated after the treatment with ESW-L. These findings suggest that the enzymatic activity of RT and genomic RNA are the target of ESW-L.

Go to Top