research-industry-display2021-10-19T17:34:01+00:00

Research

See our COVID-19 virus research – CLICK HERE

Common Generic Names

Electrolytically Generated Hypochlorous Acid (HOCl)
Neutral Electrolyzed Water (NEW)
Electrolyzed Oxidizing Water (EOW)
Electro-chemically Activated Water (ECA)
Super-oxidized water (SOW)

Results: 18 published articles

Microbe(s): Pseudomonas spp.,Shewanella spp.

ABSTRACT – Full Text PDF

The bacterial species and specific spoilage organisms associated with the Southern Australian King George Whiting (KGW) and Tasmanian Atlantic Salmon (TAS), and the efficacy of a HOCl-containing water-based sanitization product (Electro-Chemically Activated Solution, by ECAS4) in extending the shelf life of KGW and TAS fillets were evaluated. Fillets were washed with an ECAS4 solution containing either 45 ppm or 150 ppm of free chlorine and bacterial species enumerated on out many of the disadvantages of currently approved biocides.

Microbe(s): Listeria monocytogenes, Escherichia coli, Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.

Microbe(s): Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus, Campylobacter jejuni

ABSTRACT – Full Text PDF

The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hyrol possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.

Microbe(s): Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.

Microbe(s): Listeria monocytogenes

ABSTRACT – Full Text PDF

Listeria monocytogenes contamination in ready-to-eat (RTE) fish products, in particular in cold-smoked salmon is an important food safety concern. This study evaluated the antimicrobial activity of electrolyzed oxidizing (EO) water as a pretreatment method during the process of cold-smoked salmon to inactivate L. monocytogenes. In addition, the effect of EO water treatment on the sensory and textural quality of the final product was also evaluated. Raw Atlantic salmon (Salmo salar) fillets were inoculated with L. monocytogenes (with an approximately cell number of 6 105 CFU/g L. monocytogenes ATCC 19114) and treated with EO water at three different temperatures (20, 30, and 40 C) and at three different exposure time of 2, 6, and 10 min before the cold-smoking process. A combination of EO water and a mild temperature (40 C) had reduced L. monocytogenes populations by 2.85 log10 CFU/g. The sensory as evaluated by a consumer panel (N = 71) and texture, which was measured by texture analysis showed no significant changes between EO and mild temperature treated samples and the control.

Microbe(s): Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

The bactericidal effects of strongly acidic hypochlorous acid water (StAHA) and slightly acidic hypochlorous acid water (SlAHA) against Vibrio parahaemolyticus contaminated on surface of raw fish and shellfish were examined. V. parahaemolyticus contaminated with about 7.0 log CFU/g on the meat chunk of olive flounder (Paralichthys olivaceus), and yellow tail (Seriola quinqueradiata), and 4.0 log CFU/g on the shucked scallop (Patinopecten yessoensis) were not detected after washing with StAHA and SlAHA at a ratio of 30:1 on a sample weight basis. However, 1.0 log CFU/g of V. parahaemolyticus was survived on shucked oyster (Crassostrea gigas) under same treatment conditions. The bactericidal effects of acidic hypochlorous acid water against V. parahaemolyticus contaminated on surface of shucked oyster were not as effective as those against V. parahaemolyticus contaminated on surface of meat chunk of olive flounder, yellow tail, and shucked scallop. Such differences can be attributed to the complicated surface conformation of oyster.

Microbe(s): MNV-1, Norovirus, HAV, Hepatitis A

ABSTRACT – Full Text PDF

The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.

Microbe(s): Escherichia coli, Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

The aim of this study was to determine the combined effects of slightly acidic electrolyzed water SAEW (pH range 5.06.5, oxidationreduction potential 6501000 mV, available chlorine concentration 1080 mg/L) containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound US (37 kHz, 380 W) using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 67 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.041.86 log reduction) and V. parahaemolyticus (1.021.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y=6.153220.024732X 10.016486X 20.00015X 1 X 20.00024X 1 20.00007X 2 2) and V. parahaemolyticus (Y=5.676490.042598X 10.014013X 20.00003X 1 X 20.00006X 1 20.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.

Microbe(s): Total Microbial Count

ABSTRACT – Full Text PDF

The combined effect of weakly acidic electrolyzed water (WAEW) ice-glazing and modified atmosphere packaging (MAP) treatment on the quality of pacific white shrimp (Litopenaeus vannamei) during frozen storage was investigated in terms of microbiological activity, TVBN, TMA and TBARS content, texture, color and volatile flavor analysis. As a result, significantly (p < 0.05) higher inhibitor effects on total aerobes and Staphylococcus aureus were observed in WAEW ice-glazed shrimp packaged in 40% CO2 + 10% O2 + 50% N2 or in 30% CO2 + 20% O2 + 50% N2 than the water- and WAEW ice-glazed batches. Additionally, chemical analysis results showed that WAEW ice-glazing combined with MAP was highly effective in maintaining lower TVBN, TMA and TBARS values in frozen shrimp, perhaps due to the synergistic effect of antibacterial and antioxidant abilities. On the other hand, the texture, L*, and a* results also confirmed that this combined treatment effectively retarded the degradation of the physical structure of shrimp muscle and showed a positive effect on the stability of color during frozen storage. However, the presence of WAEW ice-glaze showed a negative effect on the volatile flavor of thawed shrimp due to the volatile chlorine and chlorine dioxide, but no significant effect in the cooked samples. Overall, the application of WAEW ice-glazing combined with MAP on peeled frozen shrimp is advisable to achieve better quality maintenance and extend the shelf-life of refrigerated products.

Microbe(s): Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4 30 C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, ; the maximum growth rate, max; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 C). The results showed that AEW treatment could markedly (p < 0.05) decrease the growth rate ( max) and extend the lag time ( ) during the post-treatment storage at 30, 25, 20 and 15 C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p < 0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage.

Microbe(s): Total Microbial Count

ABSTRACT – Full Text PDF

Electrolyzed water ice is a relatively new concept developed in food industry in recent years. The objective of this study was to investigate the effects of acidic electrolyzed water (AEW) ice, compared with tap water (TW) ice, on quality of shrimp (Litopenaeus vannamei) in dark condition. The chemical changes, microbiological changes and polyphenol oxidase (PPO) activity of shrimp stored in AEW ice or TW ice were measured periodically. The results showed that AEW ice significantly (p < 0.05) inhibited the changes of pH, the formation of total volatile basic nitrogen (TVBN), and the proliferation of total bacteria counts in shrimp. The diversity of bacterial flora in shrimp stored in AEW ice was greatly reduced according to the Shannon index and the average similarity coefficient based on PCR-DGGE method. Additionally, AEW ice could serve as a potential substance to inhibit PPO activity in shrimp. Based on above analysis, AEW ice is a valid post-harvest treatment for preserving the quality of seafood in dark condition.

Microbe(s): (Listeria monocytogenes, Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

The objective of this study was to evaluate physicochemical properties and bactericidal activities of acidic electrolyzed water (AEW) used or stored at different temperatures on shrimp. Three independent experiments were carried out. The first experiment was to evaluate the physicochemical properties and bactericidal activities of AEW used at three different temperatures (4, 20, 50 C) against food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) contamination on cooked shrimp at 1 or 5 min; the second one was to monitor the bactericidal activity of AEW used at two temperatures (20, 50 C) against total aerobic bacteria on raw shrimp at 5 min by conventional plate count method and PCR DGGE method; the last one was to examine the physicochemical properties and bactericidal activities of AEW (AEW1, AEW2) stored at two temperatures ( 18, 25 C) for 30 d against total aerobic bacteria on raw shrimp at 2 min. Results showed that AEW used at 50 C showed the best bactericidal activity, leading to a log reduction of 3.11 for V. parahaemolyticus, 1.96 for L. monocytogenes and 1.44 for total aerobic bacteria at 5 min, respectively. Conventional plate count and PCR DGGE (denaturing gradient gel electrophoresis) study further suggested that the bactericidal activity of AEW used at 50 C was higher than at 20 C. The loss of bactericidal activity of AEW stored at 18 C was less than that of stored at 25 C, and the ORP and ACC decreased more slowly than those of stored at 25 C. However, the ORP and ACC of AEW used at 50 C showed a remarkably faster decrease than that of used at 20 C. We suggest using AEW at 50 C to enhance bactericidal activity and storing at 18 C to keep the content of ACC and the bactericidal activity.

Microbe(s): Vibrio parahaemolyticus

ABSTRACT – Full Text PDF

The objective of this study was to investigate the efficacy of acidic electrolyzed water (AEW) against Vibrio parahaemolyticus on shrimp. The shrimp was initially inoculated with V. parahaemolyticus(7 8 log CFU/g), and treated with AEW (AEW1 containing 51 mg/L of chlorine or AEW2 containing 78 mg/L of chlorine) or organic acids (2% AA and 2%LA) for 1 min or 5 min under different treated conditions. The effect of AEW was better than that of organic acids, the number of survival V. parahaemolyticus cells on shrimp was reduced by 0.9 log CFU/g after treatment for 5 min with AEW without vibration, while 1.0 log CFU/g bacteria cells reduced with vibration. No significant difference (p > 0.05) was observed between AEW and organic acids in the bactericidal activity with or without vibration. The effective order of temperatures on bactericidal activities of AEW was 50 C > 20 C > 4 C, and a 3.1 log CFU/g reduction of V. parahaemolyticus cells on shrimp was detected with treatment of AEW at 50 C. Mild heat greatly enhanced efficacy of electrolyzed water against V. parahaemolyticus. Basic electrolyzed water (BEW) (50 C) pretreatment combined with AEW (50 C) treatment remarkably reduced bacterial cells by 5.4 log CFU/g on shrimp after treatment for 5 min. There was a significant change in physicochemical properties (pH, ORP, ACC) of AEW, after it was used to wash shrimp (P < 0.05). This study suggests that BEW (50 C) pretreatment followed by AEW (50 C) treatment could be a possible method to effectively control V. parahaemolyticus contamination on shrimp.

Microbe(s): Escherichia coli

ABSTRACT – Full Text PDF

Electrolyzed seawater (ESW) is reportedly an effective disinfectant for aquaculture equipment becaof its simple mechanism and cost effectiveness. The potential of electrolyzed seawater for oyster depuration was studied using different experiments. The first was determination of chlorine tolerance of oysters. Second was effectiveness of ESW against Escherichia coli in artificially contaminated oysters and third was effectiveness of ESW against E. coli in naturally contaminated oysters from two culture farms. Tolerance of oysters for Chlorine was studied by scanning electron microscopy (SEM) and histological observation demonstrating that more than 0.5 mg/L of chlorine was toxic while 0.2 mg/L was safe for the oysters. Oysters artificially contaminated with E. coli (230 MPN/100 mL, 16.5 C for 15 h) were depurated for 6, 24, and 48 h using ESW and UV irradiated seawater. E. coli counts in artificially contaminated oysters decreased to below the detection limit (30 E. coli MPN/100 g) after depuration with ESW for 24 h or UV irradiated seawater for 6 h. In experiments on naturally contaminated oysters E. coli counts decreased to below detection limits after depuration with ESW for 24 h. From these results, electrolysis of seawater is a useful method for post harvest elimination of E. coli from oysters.

Microbe(s): Listeria monocytogenes

ABSTRACT – Full Text PDF

The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus

ABSTRACT – Full Text PDF

Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 107 CFU/ml) and V. vulnificus (8.69 107 CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (>6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 104 and 106 most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (>12 h) of oysters in EO water containing high levels of chlorine (>30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to6hto avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.

Microbe(s): Total Microbial Count

ABSTRACT – Full Text PDF

Aims: To evaluate the efficacy of electrolysed NaCl solutions (EW) for disinfecting bacterial isolates from carp, and the potential application of EW to reducing the bacterial load in whole carp and carp fillets. Methods and Results: EW was produced by using a two-compartment batch-type electrolysed apparatus. Pure cultures (in vitro), whole carp (skin surface) and carp fillets were treated with EW to detect its antimicrobial effects. The anodic solution [EW (+)] completely inhibited growth of the isolates. Furthermore, dipping the fish samples in EW (+) reduced the mean total count of aerobic bacteria on the skin of whole carp and in fillets by 2 8 and 2 0 log10, respectively. The cathodic solution [EW ( )] also reduced growth of the isolates from carp by ca 1 0 log10. Moreover, the total counts of aerobic bacteria in whole carp (on the skin) and fillets were reduced by 1 28 and 0 82 log10, respectively. Conclusions: EW (+) has a strong bactericidal effect on bacteria isolated from carp. Significance and Impact of the Study: Treatment with EW (+) could extend the shelf life of these fish.

Microbe(s): Listeria monocytogenes

ABSTRACT – Full Text PDF

The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

Go to Top